Sunday, November 3, 2024
HomeSensoryCataractSenile Cataract & N-acetylcarnosine Eye-Drops

Senile Cataract & N-acetylcarnosine Eye-Drops

Senile Cataract & N-acetylcarnosine Eye-DropsBy Robert Mason PhD Visit this articles Sponsor Cataract is the leading cause of blindness and accounts for about 42% of all such cases worldwide, and this is in-spite of the availability of effective surgical treatment. Today we have the appalling situation where more than 17 million people around the world are blind because of cataract and 28,000 new cases are reported everyday.

Senile Cataract & N-acetylcarnosine Eye-Drops
By
Robert Mason PhD

Cataract is the leading cause of blindness and accounts for about 42% of all
such cases worldwide, and this is in-spite of the availability of effective
surgical treatment. Today we have the appalling situation where more than 17
million people around the world are blind because of cataract and 28,000 new
cases are reported everyday. In developing countries, there is simply not a
sufficient number of surgeons to perform cataract operations.

Cataract surgery is the most commonly performed surgical procedure in people
over 65-years of age, and 43% of all visits to ophthalmologists by Medicare
patients in the US are directly associated with cataract.

Meanwhile, approximately 25% of the population over 65 (and about 50% over
80), have a serious loss of vision due to cataract. Since this is the population
that is most susceptible to lens opacification and as this section of the
population is expected to increase dramatically, the numbers of individuals with
cataract is set to explode!

For example, the World Health Organization anticipates that within the next
25-years, that 20% of the population will be 65 or older. Furthermore, the
single largest growing section of the population are those over 85 and their
actual numbers are expected to quadruple in about the same period. Such a
rapidly burgeoning older population can only increase the numbers of individuals
suffering from cataract.

Of course, there is also the economic impact. Currently 1.35 million cataract
operations are performed annually in the United States alone and Medicare
estimates the annual cost at $3.5 billion! There’s no doubt about it, cataract
is a major disease.

It is also becoming apparent that it will not be possible to eliminate the
overall problems (including blindness), caused by cataract with the current
procedures. With so many people presenting the afflictions of maturity onset
cataract, it appears not to be possible to train in-time, the necessary numbers
of surgeons required. In-fact, as-it-stands, it looks likely that the total
number of people with serious eye-disorders because of cataract, will increase
dramatically worldwide.

Surgical complications

There is another aspect to the problem that is rarely discussed. While
cataract surgery is generally recognised as being one of the safest operations,
there is a significant complication rate. For example, in the United States 30%
to 50% of all patients having cataract extraction, develop opacification of the
posterior lens capsule within two years and require further lazer treatment.

Since the number of cataract operations is so large, even a small percentage
of complications represents a significant number of people. Of the patients
having cataract surgery, 0.8% have retinal detachments, 0.6% to 1.3% are
hospitalized for corneal edema (or require corneal transplantation), and 0.1%
present endophthalmitis.

Thus, aside from secondary cataract, about 2% of the 1.35 million (or
approximately 27,000 individuals), just in the US each year, develop serious
complications as a result of cataract surgery.

It is therefore difficult to support the argument that cataract research is
unimportant with statistics such as those cited above. The large and growing
number of people blind with cataract and the significant complication rate,
should be sufficient reason to increase cataract research.

The considerable discomfort experienced by patients as their vision
diminishes, and the complete loss of accommodation resulting in the removal of
the lens should also be recognised. Besides the possible complications, an
artificial lens just does not have the overall optical qualities of a natural
lens.

A medical solution is required that will maintain the transparency of the
lens. Even if the development of cataract can be delayed by 10-years, the
overall benefits would be highly significant.

The development of NALC

Over the last decade the scientists at the Helmholtz Institute of Eye Disease
in Moscow have tested various forms of carnosine. One in particular, is known as
n-alpha acetylcarnosine or abbreviated here to NALC.

NALC presents the first major leap forward in the treatment and possible
prevention of senile cataract.

A particular, proprietary method of producing extremely high purity NALC, has
proven itself to be a suitable ophthalmic drug for the non-surgical treatment of
age-related cataracts. Yet it also displays high efficacy and physiological
tolerance.

NALC has a highly statistical and very significant clinical success rate for
patients within 3-12 months of treatment. Not surprisingly, NALC now has
numerous formula patents, including its use for cataract. It is also interesting
to note that NALC eye-drops are patented for use in open-angle glaucoma, but as
yet, the research for that disorder remains unpublished.

Human trials

Carnosine eye-drops were used in a clinical trial to treat 96 patients aged
60 and above. All the patients had senile cataract in various degrees of
maturity. The duration of the disease in these patients ranged between 2 and 21
years.

Firstly, the researchers stopped the patients use of all other anti-cataract
drugs. Then the patients instilled 1 or 2 drops into each eye 3 or 4 times a
day, for a period of 3 to 6 months.

The level of eyesight improvement and the change of lens transparency was
considered as an evaluation index. The results showed that there was a
pronounced effect on primary senile cataract, the effective rate was 100% (i.e.
all patients experienced an improvement). For the more mature senile cataract
(i.e. those who had had the cataract the longest time, in some cases more than
20-years) the effective rate was still an extremely impressive 80%.

These are remarkable results, considering that the best that could normally
be expected would be a slight improvement, a halt to the progression and under
normal (i.e. non-treated) circumstances a continual worsening of the
disease.

Importantly, it was also noted that there were no side effects noted in any
of the cases.

Another Russian study was designed to document and quantify the changes in
lens clarity over a 6 to 24 month period for 49 volunteers. Their average age
was 65 and all suffered from senile cataract of a minimal to advanced
opacification.

The patients received either a 1% solution of NALC eye-drops or a placebo, as
2-drops twice a day into each eye. The patients were then evaluated at 2 and 6
month periods. The tests consisted of ophthalmoscopy (glare test),
stereocinematagraphic (slit-image) and retro-illumination (photography). A
computerized digital analysis then displayed the light scattering and absorbing
effects of the centers of each lens.

At 6-months, 88.9% of all eyes treated with NALC had an improvement of glare
sensitivity, (lowest individual score was a 27% improvement, right the way up to
a 100% improvement). 41.5% of all eyes treated with NALC had a significant
improvement of the transmissivity of the lens, but perhaps most importantly 90%
of the eyes treated with NALC showed an improvement in visual acuity. Meanwhile,
in the placebo group there was little change in eye quality at 6-months and a
gradual deterioration at 12 to 24 months.

Importantly, this study also showed that at 24-months the NALC treated group,
(who already had significant improvement to the quality of their eyesight),
sustained these results with continued use of the NALC eye-drops.

Once again, no significant side effects were noted in any cases throughout
the 2-year period.

Another interesting study also evaluated patients between the ages of 48 and
60, who had various degrees of eyesight impairment, but who did not have the
symptoms of cataract. After a course of treatment ranging from 2 to 6 months the
conclusion was, that the eye-drops alleviated eye-tiredness and continued to
improve eyesight (i.e. there was more clear vision). The subjects reported that
the treatment “brightened” and “relaxed” their eyes. This is an important
indicator that the eye-drops have a value both for preventative purposes, as
well as medical applications.

At this time, it is now believed that carnosine eye-drop treatment has been
applied to over one thousand patients with senile cataract in China and Russia,
(those countries are home to the principal researchers behind the work). Clear
evidence is emerging that NALC eye-drops are a safe, effective treatment and
potential preventative against cataract.

NALC method of action

Cataract is a glycosylation problem. This reaction occurs when proteins
became cross-linked (and hence impaired). The result of this reaction
leads to the discoloration of the eye-lens to yellow and brown, and hence the
impairment of vision. But, carnosine is known to compete on the molecule for the
glycating agent and protect cellular structures against aldehydes. Therefore,
carnosine can slow and help to prevent proteins from becoming cross-linked, (and
in this case from becoming cataract).

NALC has been shown to be highly resistant to carnosinase, (the natural
enzyme that breaks down L-carnosine into histamine etc.). An experiment on
rabbits showed that NALC eye drops allow themselves to be broken down into
L-carnosine once inside the eye’s aqueous humor, (a process that occurs within
15 to 30 minutes after application of the eye-drops).

L-carnosine is an excellent anti-oxidant and is particularly effective
against potent free-radicals, especially the Superoxide and the Hydroxyl. It is
therefore presumed, that the anti-oxidant role of L-carnosine (within the
aqueous humor) is a major factor, in slowing and preventing the appearance of
cataract.

However, when L-carnosine eye-drops were used there was no presence of
L-carnosine in the aqueous humor (even after 30-minutes). This may be because
L-carnosine is broken down early into histamine etc., before it reaches the
aqueous humor. So, NALC may act as a “carrier” for L-carnosine delivering it to
where it is needed.

The powerful anti-oxidant abilities of carnosine within the eye, and the
prevention of cross-linking, helps to explain why NALC is effective at
preventing and slowing cataract, perhaps even halting it. But it doesn’t explain
why NALC has been shown to reverse cataract. But we may already know the
answer.

For example, it is known that when carnosine is delivered in high doses, that
it can reverse protein-aldehyde cross-linking, (this reaction is normally very
difficult to reverse). Under these circumstances, carnosine has been shown to
have a “rejuvenating” effect on cultured cells.

Cataract develops when anti-oxidant defense is exhausted, leading to the
cross-linking of the lens crystallins, (producing a clouded lens, and hence
impaired eyesight). We can assume that the regular use of a 1% NALC eye-drop,
(as used in the clinical trials), delivers “a high-dose of carnosine capable of
reversing the lens cross-linking,” and hence the reduction and eradication of
cataract.

So in conclusion, NALC eye-drops appear to act as a universal anti-oxidant,
both in the lipid phase of the cellular lens membranes, and in the aqueous
environment. NALC eye-drops reduce and protect the crystalline lens from
oxidative stress-induced, cross-linking damage.

NALC compared to L-carnosine

We may logically ask the question; why have NALC eye-drops been shown to have
this action upon cataract, and yet L-carnosine (which is its sister di-peptide)
appears to have little benefit? Dr. Mark Babizhayev, one of the principal
Russian researchers behind the clinical trials with NALC eye-drops gave us this
reply to that very same question:

“I believe that the application of L-carnosine for the treatment of human
cataracts is misleading. This is because L-carnosine readily becomes a substrate
for the activity of natural peptidases (i.e. carnosinase) in the aqueous humor.
So much so, that there is no sign of L-carnosine in the aqueous humor within 15
minutes after instillation. Furthermore, I consider that L-carnosine eye-drops
may even be harmful for eyes because it gradually releases histamine, which,
located as it would be in the presence of the eye-lens is a very toxic agent.
However, NALC eye-drops are resistant to hydrolysis with natural carnosinase.
Therefore, NALC is the only currently known agent which reverses and
prevents human cataracts.”

In conjunction with Dr. Hipkiss and Dr. Kyriazis information, we can conclude
that while some of the benefits of oral L-carnosine may derive after carnosinase
breaks down into histamine, that in the case of eye-drops, L-carnosine must be
avoided.

Buyer beware!

Dr. Mark Babizhayev also makes it quite clear that “ordinary” NALC will not
be of much use in the treatment of senile-cataract. This is because there are
many synthesized “carnosines” and their biological and medicinal activity
strongly varies and depends on the mode of their obtention.

For example, if carnosine is extracted from meat muscle substances, the
biological and anti-oxidant activity is very low. This is presumably due to the
contamination of the “pure” carnosine substance by heavy metal salts and
proteins and other related impurities. It is very difficult to purify carnosine
chromatographically, as the compound chelates divalent metal ions very heavily
and the biological and anti-oxidant activities can not be regenerated during the
purification procedures.

In conclusion, there were many forms of carnosine which were abandoned in the
Russian studies because of their lack of anti-cataract and anti-oxidant ability
in the human eye.

Cataract is a widespread age-related affliction and NALC eye-drops appear
to be a highly efficacious and safe treatment for cataract. As such, I suspect
that this supplement is going to become one of the most important new
discoveries, and will have a major impact on the way that cataract is
controlled.

Copyright 2003. This article may not be reproduced
for public broadcast in any form, without the written permission
of:
www.antiaging-systems.com

References

1. Boldyrev AA, Dupin AM, Bunin Aya, Babizhayev MA, Severin SE “The
antioxidative properties of carnosine, a natural histidine containing
di-peptide.” Biochem. Inrern., 1987, 15/6, 1105-1113.
2. Babizhayev MA
et al “N-Acetylcarnosine, a natural histidine-containing di-peptide, as a potent
ophthalmic drug in treatment of human cataracts.” Peptides (USA) 2001, 22(6):
979-994.
3. Babizhayev MA, Yermakova VN, Deyev Al, Seguin M-C
“Imidazole-containing peptiomimetic NALCA as a potent drug for the medicinal
treatment of age-related cataract in humans.” J. Anti-Aging Medicine 2000, 2,
43-62.
4. Babizhayev MA, Yermakova VN, Semiletov yu A, Deyev Al “The
natural histidine-containing di-peptide N-acetylcarnosine as an antioxidant for
ophthalmic use.” Biochemistry (Moscow), 2000, 65, 588-598.
5. Babizhayev
MA, Yermakova VN, Sakina NL, Evstigneeva RP, Rozhkova EA, Zheltukhina GA
“N-Acetycarnosine is a prodrug of L-carnosine in ophthalmic application as
antioxidant.” Clin. Chim. Acta., 1996, 254, 1-21.
6. Babizhayev MA,
Bozzo Costa E “Composizioni farmaceutiche contenenti N-acetilcarnosina per il
trattamento della cataratta.” A61K gruppo 37/00 cap 20122 MI 15.10.1993. Italian
patent.
7. Babizhayev MA, Bozzo Costa E “Pharmaceutical compositions
containing N-Acetylcarnosine for the treatment of cataract.” European Patent
PCT/EP 94/03340 10.10.1994 Ref. SCB 238 PCT.
8. Babizhayev MA, Seguin
M-C, Gueyene J, Evstigneeva RP, Ageyeva EA, Zheltukhina GA “L-carnosine and
carcinine act as natural antioxidants with hydroxyl-radical-scavenging and lipid
peroxidase activities.” Biochem J. 304, 509-516.
9. Babizhayev MA,
“Antioxidant activity of L-carnosine, a natural histidine-containing di-peptide
in crystalline lens.” Biochem. Biophys. Acta., 1989, 1004,
363-371.
10. Babizhayev MA, Deyev Al “Lens opacity induced by lipid
peroxidation products as a model of cataract associated with retinal disease.”
Biochim. Biophys. Acta., 1989, 1004, 124-133.
11. Babizhayev MA, Deyev
Al “Free radical oxidation of lipid and thiol groups in genesis of cataract.”
Biophysics (biofizika), 1986, 31, 119-125, Pergamon Journals
Ltd.
12. Kantha S, Wada S, Tanaka H, Takeushi M, Watabe S, Ochi H
(1966), Biochem. Biophys. Res. Commun. 223, 278-292.
13. Babizhayev MA,
Deyev Al, Linberg LF “Lipid peroxidation as a possible cause of cataract.” Mech.
Ageing Dev. 1988, 44, 69-89.
14. Boldyrev AA, “Problems and perspectives
in studying the biological role of carnosine” International Center for
Biotechnology, Department of Biochemistry, Lomonosov, Moscow State
University.
15. Hipkiss A, (1998) Int. J. Biochem. Mol. Biol., 30,
863-868.
16. Boldyrev AA, Dupin A, Bunin A, Babizhayev MA, Severin SE
(1987), Biochem. Int., 15, 1107-1113.
17. Wang AM, Ma C, Xie H, F Shen
“Medical application of carnosine” Department of Biochemistry and Neurobiology,
Harbin Medical University, China.
18. World Health Organisation, Ageing
and Health, Website: http://www.who.int/ageing/scope.html

RELATED ARTICLES

Most Popular