Non-Profit Trusted Source of Non-Commercial Health Information
The Original Voice of the American Academy of Anti-Aging, Preventative, and Regenerative Medicine
logo logo
Cancer DNA repair Genetic Research

Shattered Chromosomes Promote Cancer Cell Growth

9 months ago

5590  0
Posted on Dec 24, 2020, 5 p.m.

Researchers from the University of California San Diego School Of Medicine and the UC San Diego branch of the Ludwig Institute for Cancer Research published in the journal Nature report how the process of chromothripsis ultimately promotes cancer cell growth. 

Chromothripsis is a mutational process by which up to thousands of clustered chromosomal rearrangements occur in a single event in localized and confined genomic regions on one or a few chromosomes, and it is known to be involved in both cancer and congenital diseases. 

Chromothripsis means chromosome shattering; those that undergo this process first fragment into many pieces and then are put back together in random order by DNA repair process which is most likely non-homologous end-joining. 

“These rearrangements can occur in a single step,” explained Ofer Shoshani, Ph.D., a postdoctoral fellow in the lab of Don Cleveland, Ph.D., professor of medicine, neurosciences, and cellular and molecular medicine at UC San Diego School of Medicine.

“During chromothripsis, a chromosome in a cell is shattered into many pieces, hundreds in some cases, followed by reassembly in a shuffled order. Some pieces get lost while others persist as extra-chromosomal DNA (ecDNA). Some of these ecDNA elements promote cancer cell growth and form minute-sized chromosomes called ‘double minutes.'

Previously the team found that up to half of all cancer cells in many types of cancer contain ecDNA carrying cancer-promoting genes. In this study, the team employed direct visualization of chromosome structure to identify the steps in gene amplification and the mechanisms underlying resistance to methotrexate. 

Entire genomes of cell developing drug resistance were sequenced revealing that chromosome shattering prompts the formation of ecDNA carrying genes that confer anticancer therapy resistance. Additionally, the team observed how chromothripsis drives ecDNA formation after gene amplification inside a chromosome. 

“Chromothripsis converts intra-chromosomal amplifications (internal) into extra-chromosomal (external) amplifications and that amplified ecDNA can then reintegrate into chromosomal locations in response to DNA damage from chemotherapy or radiotherapy,” said Shoshani. “The new work highlights the role of chromothripsis at all critical stages in the life cycle of amplified DNA in cancer cells, explaining how cancer cells can become more aggressive or drug-resistant.”

“Our identifications of repetitive DNA shattering as a driver of anticancer drug resistance and of DNA repair pathways necessary for reassembling the shattered chromosomal pieces has enabled rational design of combination drug therapies to prevent development of drug resistance in cancer patients, thereby improving their outcome,” noted Cleveland.

Findings suggest that chromothripsis is a primary driver that accelerates genomic DNA rearrangement and amplification into ecDNA and enables the rapid acquisition of tolerance to altered growth conditions. 

Materials provided by:

Content may be edited for style and length.

This article is not intended to provide medical diagnosis, advice, treatment, or endorsement

WorldHealth Videos