Scientists from the Max Planck Institute of Colloids and Interfaces, Potsdam, and from eight other scientific institutions in Germany, France, the Netherlands, and Italy have received 2 Million Euro from the European Union for research on “Active Biomimetic Systems”. These systems involve two types of biomolecular nanomachines, growing filaments and stepping motors, which are able to generate force in the nanodomain. The research network, which is coordinated by Prof. Reinhard Lipowsky, will elucidate the molecular mechanism underlying this force generation and will explore new possibilities for the integration of these molecular machines into nano- and microsystems. The network was launched on May 1, 2005.
Biomimetic systems mimic or imitate certain aspects of biological systems. One astounding aspect of biological cells is their ability to undergo dramatic morphological transformations: they can adapt their shape in order to squeeze themselves through very narrow pores, they can extend long `feet’ in order to crawl along surfaces, and they can divide themselves up into two daughter cells. All of these transformation processes are based on two types of biomolecular nanomachines: growing filaments and stepping motors.
Both types of nanomachines are constructed from proteins but use distinct mechanisms for force generation. Filaments are rod-like structures with a thickness of about 10 nanometers but a length of many micrometers. One end of the filament grows by the addition of nanometer-sized building blocks and, in this way, generates a pushing force. Stepping motors are proteins with two identical `legs’, which are about 10 nanometers in size. When in contact with a filament, such a motor undergoes a certain conformational transformation, a so-called “power stroke“, which enables the motor to generate a pulling force.